孪生素数估摸,影响或超1

2019-10-19 作者:奥门金沙手机娱乐网址   |   浏览(81)

最近,《自然》杂志的网站上刊登了一篇文章,在华人数学爱好者和学者之间产生了轰动。该文章的标题是《第一个无穷组素数成对出现的证明》。

图片 1 
张益唐近照,由新罕布什尔大学提供

“孪生素数猜想”是什么?

这篇文章为何会引起轰动呢?这要从“孪生素数猜想”说起。众所周知,素数是只含有两个因子的自然数(即只能被自身和1整除)。而“孪生素数”是指两个相差为2的素数,例如3和5,17和19等。孪生素数猜想是说,存在无穷对孪生素数。

孪生素数的问题已经有约200年的历史。在1900年的国际数学家大会上,希尔伯特将孪生素数猜想列入了他那著名的23个数学问题。想了解这个问题的奇妙之处,需要大概了解素数的分布规律。2000多年前,古希腊数学家欧几里德最先证明了素数在自然数中有无穷多个。这个证明是数学爱好者都很熟悉的,英国数学家哈代在他的《一个数学家的辩白》中也对这个证明津津乐道(如果有人没有读过的,推荐一读)。

随着数学慢慢发展,人们渐渐意识到素数在自然数的分布具有一定的规律。随着数量级的增大,素数的密度越来越小。例如,100以内有25个素数(25%),而100万以内的素数只有7.85%。尽管素数的分布越来越稀疏,但其稀疏程度却是可以度量的。例如,人们发现素数的倒数和为无穷,这就意味着素数的分布比完全平方数要稠密。在法国数学家勒让德和德国数学家高斯等人的推动下,人们开始猜测素数的分布律接近x/ln(x),即前x个整数中大约有x/ln(x)个素数。这一结果于1896年被两位数学家各自证明,此时距离勒让德的猜想提出已经有98年。

素数的分布律说明,素数在自然数中越来越稀疏,同时素数之间的距离——平均而言——会越来越远。因此,孪生素数猜想也就显得很越发奇妙——如果素数之间的距离真的越来越远,那么出现无穷对距离为2的素数就不是那么显然的事了。这似乎说明素数的分布是相当“随机”的,而不是近似均匀的扩散。可能学概率论的读者会注意到,这一结论与概率论中“随时间推移,一维标准布朗运动的位置平均而言离0点越来越远,但却以概率1无穷次折回0点”有着异曲同工之妙。的确,素数的分布律与随机过程非常相似。然而,更为奇妙的是,素数的位置是完全是确定的,其本质上毫无随机性。

  张益唐是个对数字“极其敏感”的人,他能把大学同班同学的出生日期背得“滚瓜烂熟”,并在每个人过生日时发去一封祝福邮件。

张益唐做了什么工作?

终于可以讲到今天的新闻了。新罕布什尔大学(University of New Hampshire,UNH)任教的张益唐近日声称,其证明了存在无穷多对素数,其差小于7000万。尽管7000万是个很大的数字,但如果结果成立,就是第一次有人正式证明存在无穷多组间距小于定值的素数对。想想我们之前讲的,就会发现,既然素数之间的平均距离越来越远,那么存在无穷多组间距小于定值的素数对,与存在无穷多组间距为2的素数对(孪生素数猜想)是一样神奇的结论。值得一提,如果存在无穷多组间距小于定值的素数,那么,通过取子序列的办法,我们可以得知至少存在一个数字C(小于7000万),使得无穷多组素数之间的间距恰巧为C。无怪乎,美国数学家多利安·戈德菲尔( Dorian Goldfeld)评论说,从7000万到2的距离(指猜想中尚未完成的工作)相比于从无穷到7000万的距离(指张益唐的工作)来说是微不足道的。

如果张益唐的结果为正确的,那无疑是世界数学界的一大进展,其结果影响力甚至可能超过陈景润在哥德巴赫猜想方面所做的工作。

根据我一位朋友介绍,张益唐就读于北大数学78级,是当时最优秀的几个学生之一,因此也算上是我的师兄。网上关于张益唐的信息很少,只能查到他在UNH担任讲师(Lecturer)。这里,稍微讲解一下美国的学术体系。美国学术界的核心是终身教职系统(Tenure-Track),分为助理教授(Assistant Professor), 副教授(Associate Professor)和教授(Professor)三个级别。这些教授职位就是传统意义的学者,既进行教学活动,也进行科研(如果是研究型大学的话,是科研为主)。一旦获得终身教职(通常是在升到副教授时,少部分学校是到正教授时,也有部分是助理教授期间),这些教授就可以做任何自己想做的科研,即使没有经费,科研没有进展,甚至不再科研,学校无正当理由(如渎职、犯罪等)也不能开除他们。因此,终身教职是学术界的核心精神,绝大多数数学家(除了在研究所工作的外)都会进入终身教职系统。

而讲师就差多了,是临时教学职位,收入比起同资历教授(包括助理教授)差很多,教学任务也远远比教授们重。科研上来说,则是完全得不到任何支持。例如我所在的学校,讲师往往由不具有博士学位的教师来担任,教学任务是普通终身教职系统内教员的2-3倍。注意,美国的讲师和英国的讲师是不同的,后者是等价于终身教职系统内职位的。无论如何,张益唐的职位都不是一个数学家理想的职位,可以说他是在讲师的位置上蛰伏了多年。引用香港浸会大学汤老师的说法,“(张益唐老师)从没有正式工作,(人们)以为(他)离开数学界了”。数十年磨一剑,终于发表了惊人的成果。

现代数学的新结果的验证往往需要很长的时间。因为所使用的新技巧,所涉及的专业知识往往都过于高深,以至于全世界只有一两位专家可以看懂。而证明又可能很长,有时竟长达上千页,很多数学家要慢慢挤出时间来看他人的证明。即使发表在顶级数学杂志的结果,也可能时候发现有错。因此,包括我本人在内,许多人也在怀疑张益唐的结果是否正确。在这里,我只简单地将事实列出,留给数学界来评判。

  同为恢复高考后北京大学数学系第一批学生,美国普渡大学数学系教授沈捷就享受过这样的“待遇”。但他发现,七八年前张益唐突然“消失”了。因为,从那时起,他再没收到过张的生日祝福,“给他发邮件也没再回过”。

对张益唐的结果不利的事实有:

  1. 张益唐来自一所并非以数学闻名的大学,而且是临时职位,且多年以来并无突出建树。在数学界,由无名之辈解决世界难题虽然并非绝无发生,但现代以来已经几乎绝迹。
  2. 据张益唐在哈佛的报告的反响来看,他使用的数学技巧不具备革新性,是较为经典的数学技巧。新的突破由经典技巧完成在数学史上是非常罕见的。(这也是为什么只学习了初等数学的民间数学家们往往无法解决数学难题)。
  3. 所得出结论过于具有突破性,其他数学家似乎都没有办法做到。  

  5月16日,张益唐的邮件突然来了,只有一个单词:“谢谢”。在接受中国青年报记者采访时,沈捷回忆说,此前一天,他和夫人就张益唐在孪生素数方面取得的突破向他发去邮件道贺。

对张益唐的结果有利的事实有:

  1. 他将文章投到《数学年刊》(Annals of Mathematics),从新闻来看,已准备接收。审稿人的评价非常积极,认为其证明是对的,并且是一流的数学工作。Annals是世界上最权威的数学杂志,即使考虑平行地位,也远远大于《自然》(Nature)、《科学》(Science)这些杂志。在Annals上发表数学文章极难,往往都是顶尖数学家才能做到。北京大学的教授发表一篇Annals,都要在数学学院的网站上写个新闻报道一番,可见其难度。考虑到张益唐并不是成名的数学家,审稿人想必是在非常详细的审阅之后才得出的结论。
  2. 新闻提到,其他看过论文和听过报告的专家,没有人找到明显的错误(尽管有些人仍然存有怀疑),并且认为其证明思路可以看懂。
  3. 北大校友传言张益唐在北大读书期间非常突出,而77、78级由于之前的文革影响,最顶尖人才都汇聚在一起,因此如果张老师读书期间非常突出,那么至少说明他的数学潜力是没有问题的(远非所谓民间科学家所能比)。
  4. 根据华人数学家陶哲轩的博客,尽管由于他本人没有看到文章,仍无法下断言,但他对该结果的评价比较正面,并且他推测张益唐的工作是在其他几位科学家的基础上进行的合理推广。
  5. 根据另一名华人数学家转述,张益唐之前虽然没发表过几篇文章,但其有一篇关于黎曼猜想的文章发表在另一数学界高端杂志《Duke数学杂志》上,并得到审稿人很高的评价。这说明,张益唐是具有研究前沿数学问题的知识储备的。
  6. 此外,这里有一个关于张老师前几天在哈佛所做之报告的技术总结,将其基本思路整理了一下,有兴趣的朋友可以自行阅读(英文版):Bounded Gaps Between Primes

2013年5月24日更新:

我收到UNH的一名教授的来信,希望我澄清一下,“张老师在UNH十四年来每年从来没有上过四门以上的课,他得到了我们的尊重,能安心做科研。”

 

王若度 是加拿大滑铁卢大学统计与精算学系助理教授,新浪微博:王若度

  5月14日,《自然》(Nature)杂志在线报道张益唐证明了“存在无穷多个之差小于7000万的素数对”,这一研究随即被认为在孪生素数猜想这一终极数论问题上取得了重大突破,甚至有人认为其对学界的影响将超过陈景润的“1+2”证明。

  在此之前,“年近6旬”的张益唐在数学界可以说是个名不见经传的人。

  多年前曾与张益唐接触过的浙江大学数学系教授蔡天新也以为“他早从数学圈消失”了,蔡说已经“近30年没他的消息了”,没曾想“他突然向孪生素数猜想走近了一大步”——

  素数是指正因数只有1和本身即只能被自身和1整除的正整数,“孪生素数”则是指两个相差为2的素数,例如3和5,17和19等。而随着素数的增大,下一个素数离上一个素数应该越来越远,故古希腊数学家欧几里得猜想,存在无穷多对素数,他们只相差2,例如3和5,5和7,2003663613×2195000-1和2003663613×2195000+1等等。

  这就是所谓的孪生素数猜想,它与黎曼猜想、哥德巴赫猜想一样让无数数论学者为之着迷。

  数学家需要做的,是一个证明!

  然而,人们甚至不知道它的“弱形式”是否成立,用《数学文化》主编、香港浸会大学理学院院长汤涛的话说就是——能不能找到一个正数,使得有无穷多对素数之差小于这个给定正数,在孪生素数猜想中,这个正数就是2。

  张益唐找到的正数是“7000万”。

  尽管从2到7000万是一段很大的距离,《自然》的报道还是称其为一个“重要的里程碑”。正如美国圣何塞州立大学数论教授Dan Goldston所言,“从7000万到2的距离(指猜想中尚未完成的工作)相比于从无穷到7000万的距离(指张益唐的工作)来说是微不足道的。”

  此前,Goldston及其两位同事提出,存在无穷多个之差小于16的素数对,给这项猜想写下一个重要里程碑。但是,该推论尚不知如何证明。

  5月13日,张益唐在美国哈佛大学发表主题演讲,介绍了他的这项研究进展。《自然》的报道称,如果这个结果成立,就是第一次有人正式证明存在无穷多组间距小于定值的素数对。换言之,张益唐将给孪生素数猜想证明开一个真正的“头”。

  有人打了这样一个比方,张所做的工作,相当于1920年挪威的布朗证明了“9+9”,“开启”了哥德巴赫猜想的证明,接下来科学家们陆续证明了“7+7”、“6+6”……直到46年后的陈景润证明攻下离“1+1”一步之遥却或是最难的“1+2”。

  今天,沈捷正在武汉参加国际数学模型与计算研讨会,他告诉记者,他从会上获悉的评价是“这可以说是华人数学家有史以来证明最好的结果。”

  张益唐在北大的研究生导师、著名数学家潘承彪听闻这一消息后“十分高兴”,他随即给蔡天新发信并附上审稿人、美国科学院院士IWANICE的评价:证明无误、非常漂亮,相信不久会有很多人把“7000万”这个数字“变小”……

  根据加拿大滑铁卢大学统计与精算学系助理教授王若度的说法,世界顶级数学期刊《数学年刊》(Annals of Mathematics)将准备接受张益唐作出证明的这篇文章,审稿人还评价“其证明是对的,并且是一流的数学工作”。

  学界沉浸在一场重大发现的狂欢中。

  与此同时,人们却惊讶地发现,除了这篇自然报道,不管是通过哪种搜索引擎,都很难找到有关“张益唐”个人的信息——

本文由奥门金沙网址发布于奥门金沙手机娱乐网址,转载请注明出处:孪生素数估摸,影响或超1

关键词:

  • 上一篇:没有了
  • 下一篇:没有了